
CS482 – Linux Firewall Exploration Lab 1

Linux Firewall Exploration Lab
35 Points

Due Date: Start of Lesson 12

Derived from c©2006 - 2014 Wenliang Du, Syracuse University. Do not redistribute with explicit consent
from MAJ Benjamin H. Klimkowski (usma@benklim.org) or CPT Michael Kranch, United States Military
Academy

1 Overview

The learning objective of this lab is for students to gain insight into how firewalls work by working with
firewall software and implementing a simplified packet filtering firewall. Firewalls have several types; in
this lab, we focus on packet filter or stateless firewalls.

Packet filters act by inspecting the individual packets; if a packet matches the filter’s set of rules, the
packet filter will either drop the packet or foward it, depending on what the rules state. Packet filters are usu-
ally stateless; they filter each packet based only on the information contained in that packet, without paying
attention to whether a packet is part of an existing stream of traffic. Packet filters often use a combination of
the packet’s source and destination address, protocol, and port numbers.

2 Lab Setup

You should start by loading up your three Ubuntu systems. Log in and verify the IP and MAC address of
each. Write each system information below for future reference. Based on the set-up from lab 3, Attacker’s
IP should be 10.172.x.12, Victim should be 10.172.x.10, and Observer should be 10.172.x.11.

VM1 (Attacker/Client) VM2 (Victim/Server) VM3 (Observer/Proxy)
IP: _____________ IP: _____________ IP: ______________
MAC:_____________ MAC:_____________ MAC:______________

| | |
|_________________________|________________________|
| Virtual Switch |
|__|

Since our the roles of ourVMs are different in this lab, we are going to change their names to alleviate con-
fusion. We will be renaming Attacker to VM1 Client, Victim to VM2 Server, and Observer to VM3 Proxy.
Make sure to prefrence each VM name with your first initial last name (so John Doe’s VM1 Client name
would be jdoe VM1Client). Also, make sure to snapshot your vms prior to starting this lab so you
can revert them back to their current state in future labs. In case you forgot, you change the host-
name of your VMs by editing both /etc/hosts and /etc/hostname. After editing these files, restart
your computer with sudo shutdown -r now. Alternatively, you can issue sudo hostnamectl
set-hostname <New hostname> and edit /etc/hosts, and then open a new terminal. NOTE:
Failure to edit /etc/hosts is the reason why some students’ VMs hang while issuing the sudo
command.

CS482 – Linux Firewall Exploration Lab 2

2.1 Before You Begin

This lab is much shorter than the DNS lab by design. The majority of the points will come from how well
you documented each task. To earn full credit, submit a detailed lab report to describe what you have done
and what you have observed:

• Ensure you describe all processes and results, showing that you completed the tasks, in a detailed lab
report. This should also include descriptions explaining the ”why” behind these actions

• Provide snippets of Wireshark captures that you implement to demonstrate firewall operation

Look at the Rubric and Submission requirements to get a sense of what is important!

3 Lab Tasks

3.1 Task 1a: Using Firewall - Installing Services

In order to test our firewall functionality, we need to have some additional services on our VM2 Server to
test. Using VM2 Server, download and install telnet using the command:

sudo apt-get install telnetd

After this command completes, restarting your networking services by typing:

sudo service network-manager restart

Repeat these steps on VM1 Client.
Finally, you also need to download and install openssh on VM3 Proxy using the command:

sudo apt-get install openssh-server
sudo service network-manager restart

3.2 Task 1b: Using Firewall - Testing Services

Linux has a tool called iptables, which is essentially a firewall. It has a nice front end program called
The Uncomplicated Firewall, or ufw. In this task, the objective is to use ufw to set up some firewall policies,
and observe the behaviors of your system after the policies are implemented. You need to start your first
two VMs (VM1 Client & VM2 Server). You run the firewall on your VM1 Client. Basically, we use ufw
as a personal or host-based firewall in this task. You can find the manual of ufw by typing "man ufw" or
search for it online. It is pretty straightforward to use. Please remember that the firewall is not enabled by
default, so you should run sudo ufw enable to specifically enable it. Order of rules is important! The
firewall will act on the first match. For this task, you will use VM1 Client and VM2 Server. VM1 Client
will host the firewall so that your network connection will look like the following setup:

1. First, check the default firewall configuration on VM1 Client: sudo iptables -L -n

Question 1: What are your default iptables firewall rules? Explain the difference between input,
forward and output rules.

CS482 – Linux Firewall Exploration Lab 3

2. Go to default policy file /etc/default/ufw. If DEFAULT INPUT POLICY is DROP, please
change it to ACCEPT. Otherwise, all the incoming traffic will be dropped by default. After changing
the DEFAULT INPUT POLICY to ACCEPT, reset your firefall with sudo ufw reset.

3. Now, enable the UFW: sudo ufw enable.

4. Try telnetting from VM1 Client to VM2 Server. To do this, at the command line use the command
telnet <target IP>. It will take a minute to connect. Eventually it will ask you to log in to the
target system. Use your standard eecs/scee credentials. You should be able able to complete a tel-
net connection. Once you have telnetted to VM2 Server there are a few key things you should notice:
If you successfully changed all the hostnames, you should now see that your command prompt dis-
plays eecs@user VM2 Server. Typing in whoami should return eecs still as we have not changed
any account name on any of the systems. To double verify that you are in fact telnetted into the correct
system, run ifconfig. It should provide you with the ip information for VM2 Server. If this is not
the case, you have failed somewhere in establishing your telnet connection and should try again. An
example of a successful telnet session is shown below:

CS482 – Linux Firewall Exploration Lab 4

Question 2: Why is using telnet not recommended as a best practice? Be specific.

5. Now try SSHing from VM1 Client to VM3 Proxy. To do this, open a new bash terminal and at the
command line use the command shh eecs@<target IP>. After a couple seconds, you will be
prompted that the authenticity of host can not be established and asked if want to continue connecting
- type yes. If you paid attention during the earlier openssh server install, the install created several
SSH keys including the SSH ECDSA key. A careful user would make sure the SSH key created by
the server matches the key you receive when connecting to the server. After clicking yes, you will
be prompted to enter the password for eecs. At this point, will be connected to an SSH prompt on
VM3 Proxy very similar to the telnet prompt above. Run all the same tests as above to verify your
connection. An example of a successful SSH session is shown below:

Question 3: Why is using ssh recommended in place of telnet?

6. The last check before implementing firewall rules is to check the webpage hosted at your VM2 Server.
Inside of VM1 Client, open up Firefox. In the address bar, type in 10.172.xxx.yyy/index.html,
where xxx.yyy is the ip of your VM2 Server. You should have a page pop up that simply says ”It
Works!”. If you do not get this, verify you have done everything correctly. You should also verify
that apache2 is running on your VM2 Server (you disabled in on VM1 Client, but it should be on by
default on VM2 Server). If it is disabled, re-enabled it using the steps in Section 7 of Lab 1 or by
using the below command to set apache2 to start on startup and then restart your network manager.

sudo update-rc.d apache2 default
sudo service network-manager restart

CS482 – Linux Firewall Exploration Lab 5

3.3 Task 1c: Using Firewall - Implementing Rules

1. On your VM1 Client system, set up the firewall to prevent VM1 Client from telneting to VM2 Server.
Use:
sudo ufw deny out from <Client ip> to any port 23.
Now test to verify that you can no longer telnet out of VM1 Client to VM2 Server using the same
steps you followed previously.

2. Now prevent VM2 from telneting to VM1. Use:
sudo ufw deny in from <Server ip> to <Client ip> port 23. Again, check to
verify that this rule has been applied by attempting to telnet to VM1 Client from VM2 Server.

3. Prevent VM1 from visiting an external website on VM2:

10.172.xxx.xxx/index.html

If you were to do this for a real website (like facebook.com), keep in mind that most modern web
servers have multiple IP addresses so a simple IP based blacklisting would not work. Test this new
rule and make sure it works. Note: You will likely have to clear the browser cache to verify your rule
applied correctly if you have previously visited the website. To clear the cache, click the three bars in
the top right corner (Open menu), then history, then clear recent history, and ensure Cache is selected
(just leave all selected) then hit clear now.

Question 4: What was the command you used to block this webpage hosted at VM2 Server?

Question 5: Document your steps using wire capture or appropriate methods

3.4 Task 2: Evading Egress Filtering

In task 1 we blocked telnet and applied egress filtering to prevent users from accessing certain websites/applications.
Many companies and schools enforce egress filtering, which blocks users inside of their networks from
reaching out to certain websites or Internet services. They do allow users to access other web sites. In many
cases, these types of firewalls inspect the destination IP address and port number in the outgoing packet. If
a packet matches the restrictions, it will be dropped. They usually do not conduct deep packet inspections
(i.e., looking into the data part of packets) due to performance reasons. In this task, we show how such

CS482 – Linux Firewall Exploration Lab 6

egress filtering can be bypassed using a tunnel mechanism. There are many ways to establish tunnels; in
this task, we only focus on SSH tunnels. From task 1, you should have completed:

1. Firewall blocking Telnet from VM1 Client to VM2 Server

2. Firewall blocking Telnet from VM2 Server to VM1 Client

3. Firewall blocking web access to page hosted on VM2 Server at 10.172.xxx.xxx/index.html

In addition to setting up the firewall rules, the following commands will be useful for testing implemen-
tation going forward:

$ sudo ufw enable // this will enable the firewall.
$ sudo ufw disable // this will disable the firewall.
$ sudo ufw status numbered // this will display the firewall rules.
$ sudo ufw delete 3 // this will delete the 3rd rule.

Task 2.a: Telnet to VM2 Server through the firewall using a tunnel To bypass the firewall, we could
establish an SSH tunnel between VM’s 1 and 2, so all the telnet traffic will go through this tunnel (encrypted),
evading inspection. However, it is unlikely that you will have access to a random distant end server which
would allow you to directly establish a encrypted tunnel with them. Usually, if someone is going to attempt
to circumvent a firewall, they will connect to a system they can control outside of the network. This system
will act as a proxy to the user, allowing them to appear and operate as if they were outside of the company’s
firewall. The following command establishes an SSH tunnel between the localhost’s (VM1 Client) port
8000 and VM3 Proxy port 22. When packets come out of VM3’s end, it will be forwarded to VM2’s port
23 (telnet port). To the user at VM1 Client, it will appear as if they had just telnetted to VM2 Server!

$ ssh -L 8000:VM_2_IP:23 eecs@VM_3_IP

Figure 1: SSH Tunnel Example

CS482 – Linux Firewall Exploration Lab 7

In bullet 1 in the figure, the user attempts to telnet to VM2 Server, but his company’s firewall blocks his
connection. In bullet 2, the same user has established an encrypted tunnel to a proxy server, which is set
up to forward all requests to VM2 Server (Bullet 3). Now the user can telnet to VM2 Server, through the
tunnel, effectively bypassing his company firewall.

After establishing the above tunnel, leave the command window open (note that this command window
now has a prompt showing it belongs to the VM3 Proxy.) You will now have to open up a second command
terminal in VM1 Client to execute your telnet to the VM2 Server:

$ telnet localhost 8000

SSH will transfer all your TCP packets from your end of the tunnel (localhost:8000) to VM3, and from
there, the packets will be forwarded to VM2 Server:23. Replies from VM2 Server will take a reverse path,
and eventually reach your telnet client. This results in you telneting to VM2 Server despite a firewall in
place to block this action!

A summary of the two command windows is shown below for reference:

Question 6: Please describe your observation and explain how you are able to bypass the egress
filtering. You should use Wireshark to see what exactly is happening on the wire, and include
your Wireshark capture (from VM3 Proxy) and use line numbers in your explanation. Close both
sessions once complete.

Task 2.b: Connecting to Facebook using SSH Tunnel. To achieve this goal, we can use the approach
similar to that in Task 2.a, i.e., establishing a tunnel between your localhost:port and VM3 Proxy, and ask
VM3 Proxy to forward packets to a website like Facebook. Since our VM’s do not have web access, we
will use the webpage hosted on VM2 Server that we discussed earlier in the lab. To do this, you can use the
following command to set up the tunnel: "ssh -L 8000:WebpageIP:80 ...". We will not use this
approach, and instead, we use a more generic approach, called dynamic port forwarding, instead of a static
one like that in Task 2.a. While it is not essential, we recommend you configure your browser to not cache
anything (see Appendix A). To enable dynamic port forwarding, we only specify the local port number, not
the final destination. When VM3 Proxy receives a packet from the tunnel, it will dynamically decide where
it should forward the packet to based on the destination information of the packet.

$ ssh -D 9000 -C eecs@VM_3_IP

Similar to the telnet program, which connects localhost:9000, we need to ask Firefox to connect
to localhost:9000 every time it needs to connect to a web server, allowing traffic to go through our

CS482 – Linux Firewall Exploration Lab 8

SSH tunnel. To achieve this, we can tell Firefox to use localhost:9000 as its SOCKS proxy. Clear the
”HTTP Proxy”, ”SSL Proxy”, ”FTP Proxy” settings. The following procedure does this:

Open Menu (three bars) -> Preferences -> Advanced ->
Network tab -> Settings button.

Select Manual proxy configuration
SOCKS Host: 127.0.0.1 Port: 9000
SOCKS v5
No Proxy for: localhost, 127.0.0.1

After the setup is done, please do the following:

• Run Firefox and go visit the VM2 Server page.

• After you get the webpage, break the SSH tunnel, clear the Firefox cache, and try the connection
again. Please describe your observation. Note: you are still setup to use the proxy. Since you just
killed that connection, you should get a ”Proxy server is refusing connections”. Go disable the proxy
config in Firefox and try again.

Question 7: Please explain what you have observed, especially on why the SSH tunnel can help
bypass the egress filtering.

You should use Wireshark to see what exactly is happening on the wire. Describe your observations and
a detailed explanation of the packets capture along with the Wireshark screenshot.

Question 8: If ufw blocks the TCP port 22, which is the port used by SSH, can you still set up an
SSH tunnel to evade egress filtering?

4 Submission requirements

4.1 Rubric

1. Questions 1-4, 8 2 pts

2. Documentation questions

(a) 5 pts question 5

(b) 5 pts question 7

(c) 5 pts question 6

3. 10 points for reflection (purpose of stateless firewalls, princples, lessons learned)

CS482 – Linux Firewall Exploration Lab 9

4.2 Partner Submission

Provide one written lab report, answering each question properly labelled with the number and original
question, per partner team. Be sure to include the time spent on the lab and document any external resources
used. Again good documentation:

1. clearly enumerates tasks with a description of you did and evidence.

2. shows the progress you were able to achieve.

3. explains your troubleshooting attempts.

4. accurately describes an issue and the potential solution (if really good, I will give near full credit).

4.3 Individual Submission

Each member needs to submit a detailed lab reflection. This includes

• approximately one half page that talks about the various security issues and princples.

• although we have demonstrated various evasion techniques to stateless firewalls, do they still have a
purpose? How would you employ them?

• any challenging points or thoughts on what you found interesting during the lab

• time spent you personally spent and how much effort you put forth

• time your partner spent, and how much effort they put forth

• be sure document any external resources used.

CS482 – Linux Firewall Exploration Lab 10

5 Appendix A

These instructions will show you to disable caching on your web browser so that every time you reload a
web page, the browser contacts your web server for it instead of using a local version of the page.

• In the Firefox address bar, type about:config to get a page of various preferences that you can
change. You will first be presented with a warning, click “I’ll be careful, I promise!”.

• In the “Search:” at the top, type browser.cache to filter for the cache options (see Figure 2).

Figure 2: Configuring the Firefox browser cache

• Locate and change entries as follows:

1. browser.cache.memory.enable – double-click to set the Value to “false”. This will turn
off browser caching in memory.

2. browser.cache.disk.enable – double-click to set the Value to “false”. This will turn
off browser caching on the disk drive.

3. browser.cache.check doc frequency – double-click to open a dialog box to change
the frequency, set this to 1 and click “OK”. This will force the browser to verify a page each
time you load it.

