
CS482 – Remote DNS Cache Poisoning Attack Lab 1

Remote DNS Cache Poisoning Attack Lab

1 Lab Overview

The objective of this lab is for students to gain the first-hand experience on the remote DNS cache poisoning
attack, also called the Kaminsky DNS attack [1]. DNS [2] (Domain Name System) is the Internet’s phone
book; it translates hostnames to IP addresses and vice versa. This translation is through DNS resolution,
which happens behind the scene. DNS Pharming [4] attacks manipulate this resolution process in various
ways, with an intent to misdirect users to alternative destinations, which are often malicious. This lab focuses
on a particular DNS Pharming attack technique, called DNS Cache Poisoning attack. In this remote attack
lab, packet sniffing is not possible, so the attack becomes much more challenging than if it was conducted
on the local network.

2 Lab Environment

We will setup the lab environment using one single physical machine, which runs three virtual machines.
The lab environment actually needs three seperate machines, including a computer for the victim user, a DNS
server, and the attacker’s computer. These three VMs will run the provided Ubuntu image at http://www-
internal.eecs.usma.edu/courses/cs482/setup/s3.ova. NOTE: Modern bind is robust against this attack so you
need to use this specific VM image.

VM 1 (Attacker) VM 2 (Victim) VM 3 (Observer)
10.172.x.16 10.172.x.14 10.172.x.15

| | |
|_______________________|_______________________|
| Virtual Switch |
|___|

The figure above illustrates the setup of the lab environment. For the sake of simplicity, we do put all
these VMs on the same LAN, but students are not allowed to exploit this fact in their attacks, and they
should treat the attacker machine as a remote machine, i.e., the attacker cannot sniff victim DNS server’s
packets. In this lab description, we assume that the user machine’s IP address is 10.172.xxx.15, the
DNS Server’s IP is 10.172.xxx.14 and the attacker machine’s IP is 10.172.xxx.16. However, in
your lab, you will use your IP addresses, making it clear in your reports which address is for which machine.

• Client User IP

• DNS Server IP

• Attacer IP

2.1 Configure the Local DNS server Target

Step 1: Install the BIND 9DNS server. The BIND 9 server program is already installed in our pre-built
Ubuntu VM image. The BIND 9 software is installed using the following command:

sudo apt-get install bind9

CS482 – Remote DNS Cache Poisoning Attack Lab 2

Step 2: Create the named.conf.options file. The DNS server needs to read a configuration file
/etc/bind/named.conf to start. This configuration file usually includes an option file, which is called
/etc/bind/named.conf.options. This file should already be present on your DNS server from Lab
2 setup (VM1, .4 IP). Please confirm the following option is present in the option file:

options {
dump-file "/var/cache/bind/dump.db";

};

It should be noted that the file /var/cache/bind/dump.db is used to dump DNS server’s cache.
Here are some related commands that you may find useful:

% sudo rndc flush // Flush the DNS cache
% sudo rndc dumpdb -cache // Dump the cache to dump.db

Step 3: Remove the example.com Zone. In this lab, this DNS server will not host the example.com
domain, so please remove its corresponding zone from /etc/bind/named.conf. We recommend just
commenting out both the blocks rather than deleting. NOTE: We will work solely with example.net for
this lab.

Step 4: Configure a Fake Domain Name In order for the attack to work, the attacker needs their own do-
main name (reasons for this will become clearer after you see the explanation below). Since we do not own a
real domain name, we can demonstrate the attack using our fake domain name ns.dnslabattacker.net
and some extra configuration on Target. We will basically add the ns.dnslabattacker.net’s IP
address to Target’s DNS configuration, so Target does not need to go out asking for the IP address of
this hostname from a non-existing domain. In a real-world setting, the Target’s query would resolve to
the attacker’s server, which would be registered with a DNS registrar.

We first configure the victim’s DNS server. Find the file named.conf.default-zones in the
/etc/bind/ folder, and add the following entry to it:

zone "ns.dnslabattacker.net" {
type master;
file "/etc/bind/db.attacker";

};

****Note: Order of these zone entries matters! Please place this zone at the bottom of the file.
Create the file /etc/bind/db.attacker, and place the following contents in it. We let the at-

tacker’s machine and ns.dnslabattacker.net share the machine (10.172.xxx.16). Be aware
that the format of the following contents can be messed up in the PDF file if you copy and paste.

$TTL 604800
@ IN SOA localhost. root.localhost. (

2; Serial
604800 ; Refresh
86400 ; Retry
2419200 ; Expire
604800) ; Negative Cache TTL;

@ IN NS ns.dnslabattacker.net.
@ IN A 10.172.xxx.16
@ IN AAAA ::1

CS482 – Remote DNS Cache Poisoning Attack Lab 3

Once the setup is finished, if your cache poisoning attack is successful, any DNS query sent to Target
for the hostnames in example.net will be sent to 10.172.xxx.16, which is attacker’s machine.

Step 5: Start DNS server. We can now start the DNS server using the following commands:

% sudo /etc/init.d/bind9 restart
or
% sudo service bind9 restart

2.2 Configure the Attacker MAchine

We need to configure a malicious DNS server on 10.172.xxx.16, so it answers the queries for the do-
main example.net once the attack is executed. Add the following entry in /etc/bind/named.conf.local
on 10.172.xxx.16:

zone "example.net" {
type master;
file "/etc/bind/example.net.db";

};

Create a file called /etc/bind/example.net.db, and fill it with the following contents. Please
do not directly copy and paste from the PDF file, as the format may be messed up.

$TTL 3D
@ IN SOA ns.example.net. admin.example.net. (

2008111001
8H
2H
4W
1D)

@ IN NS ns.dnslabattacker.net.
@ IN MX 10 mail.example.net.
www IN A 1.1.1.1
mail IN A 1.1.1.2

*.example.net IN A 1.1.1.100

2.3 Configure the User Machine

On the user machine 10.172.xxx.15, we need to use 10.172.xxx.14 as the default DNS server.
This is achieved by changing the DNS setting file /etc/resolv.conf of the user machine:

nameserver 10.172.xxx.14 # the ip of the DNS server you just setup

3 Lab Tasks

The main objective of Pharming attacks is to redirect the user to another machine B when the user tries to
get to machine A using A’s host name. For example, assuming www.example.net is an online banking
site. When the user tries to access this site using the correct URL www.example.net, if the adversaries

CS482 – Remote DNS Cache Poisoning Attack Lab 4

can redirect the user to a malicious web site that looks very much like www.example.net, the user might
be fooled and give away his/her credentials to the attacker.

In this task, we use the domain name www.example.net as our attacking target. It should be noted
that the example.net domain name is reserved for use in documentation, not for any real company. The
authentic IP address of www.example.net is 93.184.216.34, and it is name server is managed by the
Internet Corporation for Assigned Names and Numbers (ICANN). When the user runs the dig command
on this name or types the name in the browser, the user’s machine sends a DNS query to its local DNS
server, which will eventually ask for the IP address from example.net’s name server.

The goal of the attack is to launch the DNS cache poisoning attack on the local DNS server, such that
when the user runs the dig command to find out www.example.net’s IP address, the local DNS server
will end up going to the attacker’s name server ns.dnslabattacker.net to get the IP address, so the
IP address returned can be any number that is decided by the attacker. As a result, the user will be led to the
attacker’s web site, instead of the authentic www.example.net.

There are two tasks in this attack: cache poisoning and result verification. In the first task, students
need to poison the DNS cache of the user’s local DNS server Apollo, such that, in Target’s DNS cache,
ns.dnslabattacker.net is set as the name server for the example.net domain, instead of the
domain’s registered authoritative name server. In the second task, students need to demonstrate the impact
of the attack. More specifically, they need to run the command "dig www.example.net" from the
user’s machine, and the returned result must be a fake IP address.

Figure 1: The complete DNS query process

CS482 – Remote DNS Cache Poisoning Attack Lab 5

Figure 2: The DNS query process when example.net’s name server is cached

3.1 Task 1: Remote Cache Poisoning

In this task, the attacker sends a DNS query request to the victim DNS server, triggering a DNS query
from Target. The query may go through one of the root DNS servers, the .COM DNS server, and the
final result will come back from example.net’s DNS server. This is illustrated in Figure 1. In case that
example.net’s name server information is already cached by Target, the query will not go through the
root or the .COM server; this is illustrated in Figure 2. In this lab, the situation depicted in Figure 2 is more
common, so we will use this figure as the basis to describe the attack mechanism.

While Target waits for the DNS reply from example.net’s name server, the attacker can send
forged replies to Target, pretending that the replies are from example.net’s name server. If the forged
replies arrive first, it will be accepted by Target. The attack will be successful.

When the attacker and the DNS server are not on the same LAN, the cache poisoning attack becomes
more difficult. The difficulty is mainly caused by the fact that the transaction ID in the DNS response packet
must match with that in the query packet. Because the transaction ID in the query is usually randomly
generated, without seeing the query packet, it is not easy for the attacker to know the correct ID.

Obviously, the attacker can guess the transaction ID. Since the size of the ID is only 16 bits, if the
attacker can forge K responses within the attack window (i.e. before the legitimate response arrives), the
probability of success is K over 216. Sending out hundreds of forged responses is not impractical, so it will
not take too many tries before the attacker can succeed.

However, the above hypothetical attack has overlooked the cache effect. In reality, if the attacker is not
fortunate enough to make a correct guess before the real response packet arrives, correct information will
be cached by the DNS server for a while. This caching effect makes it impossible for the attacker to forge

CS482 – Remote DNS Cache Poisoning Attack Lab 6

another response regarding the same domain name, because the DNS server will not send out another DNS
query for this domain name before the cache times out. To forge another response on the same domain
name, the attacker has to wait for another DNS query on this domain name, which means he/she has to wait
for the cache to time out. The waiting period can be hours or days.

The Kaminsky Attack. Dan Kaminsky came up with an elegant techique to defeat the caching effect [1].
With the Kaminsky attack, attackers will be able to continuously attack a DNS server on a domain name,
without the need for waiting, so attacks can succeed within a very short period of time. Details of the attacks
are described in [1]. In this task, we will try this attack method. The following steps with reference to
Figure 2 outlines the attack.

1. The attacker queries the DNS Server Target for a non-existing name in example.net, such as
twysw.example.net, where twysw is a random name.

2. Since the mapping is unavailable in Target’s DNS cache, Target sends a DNS query to the name
server of the example.net domain.

3. While Target waits for the reply, the attacker floods Target with a stream of spoofed DNS re-
sponse [6], each trying a different transaction ID, hoping one is correct. In the response, not only
does the attacker provide an IP resolution for twysw.example.net, the attacker also provides an
“Authoritative Nameservers” record, indicating ns.dnslabattacker.net as the name server for
the example.net domain. If the spoofed response beats the actual responses and the transaction
ID matches with that in the query, Target will accept and cache the spoofed answer, and and thus
Target’s DNS cache is poisoned.

4. Even if the spoofed DNS response fails (e.g. the transaction ID does not match or it comes too late),
it does not matter, because the next time, the attacker will query a different name, so Target has to
send out another query, giving the attack another chance to do the spoofing attack. This effectively
defeats the caching effect.

5. If the attack succeeds, in Target’s DNS cache, the name server for example.net will be replaced
by the attacker’s name server ns.dnslabattacker.net. To demonstrate the success of this
attack, students need to show that such a record is in Target’s DNS cache. Figure 4 shows an
example of poisoned DNS cache.

Why did we have to create an additional DNS entry on Target? When Target receives the DNS
query, it searches for example.net’s NS record in its cache, and finds ns.dnslabattacker.net. It
will therefore send a DNS query to ns.dnslabattacker.net. However, before sending the query, it
needs to know the IP address of ns.dnslabattacker.net. This is done by issuing a seperate DNS
query. This seperate query is why we created a DNS entry on the Target server. The domain name
dnslabattacker.net does not exist in reality. We created this name for the purpose of this lab. If we
did not create that entry Target will soon find out that the name does not exist, and mark the NS entry
invalid, essentially recovering from the poisoned cache.

Attack Configuration. We need to make the following configuration for this task:

1. Configure the Attack Machine. We need to configure the attack machine, so it uses the targeted DNS
server (i.e., Target) as its default DNS server. Please refer back to Section 2.3 for the instructions
on how to do this. Make sure that the network configuration for this VM is "NAT Network".

CS482 – Remote DNS Cache Poisoning Attack Lab 7

2. Source Ports. Some DNS servers now randomize the source port number in the DNS queries; this
makes the attacks much more difficult. Unfortunately, many DNS servers still use predictable source
port number. For the sake of simplicity in this lab, we assume that the source port number is a fixed
number. We can set the source port for all DNS queries to 33333. This can be done by adding the
following option to the file /etc/bind/named.conf.options on Target:

query-source port 33333;

*****Note: This line should be added to the bottom of the named.conf.options file. Order
matters!

3. DNSSEC. Most DNS servers now adopt a protection scheme called ”DNSSEC”, which is designed
to defeat the DNS cache poisoning attack. If you do not turn it off, your attack would be extremely
difficult, if possible at all. In this lab, we will turn it off. This can be done by changing the file
/etc/bind/named.conf.options on Target. Please find the line "dnssec-validation
auto", comment it out, and then add a new line. See the following:

//dnssec-validation auto;
dnssec-enable no;

4. Flush the Cache. Flush Target’s DNS cache, and restart its DNS server. NOTE: Failure to this step
will result in not getting the correct results. BONUS: write a detailed explanation why you must do
this, see https://www.blackhat.com/presentations/bh-dc-09/Kaminsky/BlackHat-DC-09-Kaminsky-DNS-
Critical-Infrastructure.pdf for further details.

Forge DNS Response Packets. In order to complete the attack, the attacker first needs to send DNS
queries to Target for some random host names in the example.net domain. Right after each query is
sent out, the attacker needs to forge a large number of DNS response packets in a very short time window,
hoping that one of them has the correct transaction ID and it reaches the target before the authentic response
does. To make your life easier, we have provid code called udp.c. This program can send a large number
of DNS packets. This program will work without modification, but feel free to modify this sample code to
practice different variations against your Target DNS server.

1. To run the udp.c program:

(a) Compile the program! Note: you should run this from wherever you saved the udp.c file.

gcc -lpcap udp.c -o udp

(b) Form the command line arguments

sudo ./udp 10.172.XXX.15 10.172.XXX.14 10.172.XXX.16 199.43.135.53

where,

i. The first IP is the spoofed query source ip
ii. The second IP is the victim DNS server

iii. The third IP is the spoofed answer IP (malicious server); this could be whatever we want to
host, i.e you could use 10.172.XXX.16 or another IP the attacker controls

CS482 – Remote DNS Cache Poisoning Attack Lab 8

Figure 3: A Sample DNS Response Packet

iv. The fourth IP is the spoofed response source IP, i.e. the IP of the DNS server to which the
Target DNS server forwards requests. Here 199.43.135.53 is an instantce of a root
server.

Check the dump.db file on the Target to see whether your spoofed DNS response has been success-
fully accepted by the DNS server. See an example in Figure 4.

3.2 Task 2: Result Verification

If your attack is successful, Target’s DNS cache will look like that in Figure 4, i.e., the NS record for
example.net becomes ns.dnslabattacker.net. To make sure that the attack is indeed successful,
we run the dig command on the user machine (VM2) to ask for www.example.net’s IP address:dig
www.example.net. NOTE: if you fail to clear the cache before launch the attack, you will notice that
the attack will hijack the domain,example.net , but not the www.example.net subdomain. In your
lab report, please provide an explanation why. See the following source:
https://www.blackhat.com/presentations/bh-dc-09/Kaminsky/

BlackHat-DC-09-Kaminsky-DNS-Critical-Infrastructure.pdf

CS482 – Remote DNS Cache Poisoning Attack Lab 9

Figure 4: A Sample of Successfully Poisoned DNS Cache

4 Submission requirements

4.1 Partner Submission

Each team will provide one written lab report, answering each question, and providing evidence for each
step taken to include tests. Be sure to include the time spent on the lab and document any external resources
used.

4.2 Individual Submission

Each member needs to submit a detailed lab reflection. This includes

• How could you use this attack in a practical setting? I.E. if you wanted to steal someone’s banking
information, how would this attack help?

• List some of the challenges with this attack. Identify at least three major considerations (two were
mentioned already). HINT: Consider the DNS server we spoofed in the response packets from when
we ran the udp.c program. What would happen if we used a different DNS server further from the
local area network?

• any challenging points or thoughts on what you found interesting during the lab

• time spent you personally spent and how much effort you put forth

• time your partner spent, and how much effort they put forth

• be sure document any external resources used.

CS482 – Remote DNS Cache Poisoning Attack Lab 10

References

[1] D. Schneider. Fresh Phish, How a recently discovered flaw in the Internet’s Domain Name Sys-
tem makes it easy for scammers to lure you to fake Web sites. IEEE Spectrum, 2008 http:
//spectrum.ieee.org/computing/software/fresh-phish

[2] RFC 1035 Domain Names - Implementation and Specification : http://www.rfc-base.org/rfc-1035.html

[3] DNS HOWTO : http://www.tldp.org/HOWTO/DNS-HOWTO.html

[4] Pharming Guide : http://www.technicalinfo.net/papers/Pharming.html

[5] DNS Cache Poisoning: http://www.secureworks.com/resources/articles/other articles/dns-cache-
poisoning/

[6] DNS Client Spoof: http://evan.stasis.org/odds/dns-client spoofing.txt

